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ABSTRACT

A detailed microphysical and chemical cloud model has been developed to investigate the redistribution of
atmospheric trace substances through cloud processes. A multicomponent categorization scheme is used to group
cloud particles into different bins according to their various properties. Cloud drops are categorized simultane-
ously and independently in both their water mass and solute mass components. Ice phase particles are additionally
categorized according to their ‘‘shapes,”’ special effort having been paid to the parameterization of their growth
and habit changes. The hybrid bin method used conserves the mass and number of particles while at the same
time performing fast and accurate calculations for transferring various properties between categories within the
multicomponent framework. With a minimum of parameterization, this model is capable of simulating detailed
microphysical and chemical processes that occur during cloud and precipitation formation.

1. Introduction

Cloud is the dominant place in the atmosphere where
trace constituents can exist in a condensed phase. These
constituents become partially or wholly dissolved in the
cloud water, sorbed by cloud ice, or fixed in a nonvola-
tile form by means of chemical transformations that
may not be significant elsewhere in the atmosphere.
Constituents that are particularly soluble or nonvolatile
tend to be removed effectively from the atmosphere by
precipitation processes and deposited onto the earth’s
surface. Thus, cloud processes have the general effect
of cleansing the atmosphere and offsetting some air
pollution problems, although at the expense of creating
other problems such as wet acidic deposition. Those
trace chemicals not deposited by a particular storm sys-
tem become redistributed within the upper troposphere
and enter the global background atmosphere. There,
they may affect the global radiation budget and further
influence the chemistry of the atmosphere. Particulate
forms of the trace chemicals, modified in both com-
position and number concentration, can again serve as
cloud-forming nuclei for later cloud development and
thus alter precipitation and deposition patterns in non-
linear ways. The trace chemicals can also interact with
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the biosphere and cause nonlinear feedback effects on
the climate (Charlson et al. 1987). Such effects,
whether short term or long term, are interrelated
through cloud processes. Any disturbance to one com-
ponent will affect the others. Therefore, it is all the
more important that we learn to understand the physical
and chemical processes involved in clouds.

Numerical simulation is currently an active means
for studying the physics and chemistry of clouds. Due
to limitations of computer resources and imperfect
knowledge of the subject, each numerical modeling ef-
fort must focus on some aspect of the problem and use
simplifications and parameterizations to some degree.
For instance, Tripoli and Cotton (1982), as well as Lin
et al. (1983), used bulk water parameterizations to de-
scribe the microphysics in two-dimensional dynamic
models. Sarma (1986) similarly incorporated sulfate
chemistry into a bulk water model. Clark (1973) in-
cluded detailed liquid phase microphysics in a two-di-
mensional model to study warm cumulus convection.
Hall (1980) used a two-dimensional slab-symmetric
dynamic framework and a detailed treatment of both
liquid and ice phase particles. Flossmann and Prup-
pacher (1988) extended Hall’s work with the addition
of aerosol scavenging and equilibrium chemistry for
some sulfur compounds, but they neglected cold-cloud
(ice phase) processes. Tremblay and Leighton (1986),
as well as Niewiadomski (1989), used a three-dimen-
sional model with parameterized warm rain develop-
ment and kinetic oxidation of sulfur dioxide to simulate
the convective and turbulent transport of sulfur species.
Pandis and Seinfeld (1989), as well as Topalian and
Montague (1989), used a very detailed kinetic reaction



2614

scheme of the aqueous phase chemistry for the scav-
enging of pollutant gases, but included no microphysics
or dynamics. Giorgi and Chameides (1985) used a
first-order parameterization to simulate rainout in a
photochemical model within a general circulation
model without explicit cloud physics.

The evolution of cloud chemistry research has dem-
onstrated the necessity of using more detailed physics
and chemistry. Studies of Hegg and Hobbs (1988), as
well as Lamb and Chen (1988), showed that micro-
physical processes in clouds can have significant influ-
ence on the fractionation and the removal efficiency of
chemicals in clouds. Cho et al. (1989), Lamb and Chen
(1990), and Chen and Lamb (1990) have demon-
strated that ice phase microphysics can play an impor-
tant role in the scavenging of trace chemicals by clouds.
Therefore, a detailed model with adequate microphys-
ics in both liquid and ice phases is necessary for a
proper calculation of the chemistry in clouds.

The purpose of this study is to develop a numerical
scheme for simulating the microphysical and chemical
processes of clouds, with particular emphasis being
placed on the ice phase. A multicomponent particle
framework is applied that categorizes (bins) cloud par-
ticles not only according to their mass (or size) but also
according to their solute content and, for ice particles,
their shapes. Some preliminary results using such a
multicomponent particle framework have been pre-
sented by Chen and Lamb (1992) for liquid-phase pro-
cesses and by Chen and Lamb (1994) for the deposi-
tional growth of ice particles. A similar study applying
such a multicomponent structure has been done by
Roelofs (1992), but for liquid-phase processes only.
Here, we treat both liquid and ice phase processes in
detail using the multicomponent framework. This paper
describes the mixed-phase microphysics and chemistry
needed for this study, as well as the numerical methods
used. The results of the model simulation on the redis-
tribution of atmospheric trace substances through cloud
processes will be presented in subsequent papers.

2. The numerical model and methods of solution
a. Multicomponent particle framework

The evolution of atmospheric particles in size or
composition usually cannot be solved analytically.
Conventjonal cloud models often group cloud particles
into relatively few categories and are normally called
bulk water models (e.g., Kessler 1969; Clark 1974;
Tripoli and Cotton 1982; Lin et al. 1983; Mitchell
1991; Wang and Chang 1993). However, these bulk
water methods often are not sufficient to describe the
true particle spectra, especially for the ice-phase par-
ticles. Moreover, individual cloud particles act differ-
ently from bulk water in nonlinear ways. Bulk water
parameterizations may therefore give misleading re-
sults in cloud chemistry (Hegg 1989; Hegg and Larson
1990).
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By contrast, detailed cloud models allow the cloud
particle spectra to evolve naturally according to explicit
physics (e.g., Flossmann et al. 1985; Tzivion et al.
1987; Ayers and Larson 1990) by categorizing parti-
cles into many more size bins. One or more parameters
(moments ) are then used to describe the distribution of
particles in each bin. These detailed models are often
called bin models or category models. Most bin mod-
els, however, resolve the particle spectra according to
the particle size or mass only. In such models, all par-
ticles of the same size necessarily have exactly the
same physical and chemical properties. Theoretical
studies of Hill (1988), Hegg and Larson (1990), and
Chen and Lamb (1992), as well as the experimental
study of Noone et al. (1988) and Ogren et al. (1989),
showed that it is important to consider the drop size—
dependent solute concentration. The condensation
model of Johnson (1982) applied five *‘solubility’’ cat-
egories to each of the mass bins. Yet, since interactions
between particles in different bins were not allowed,
that model could not be used to study collisional pro-
CEsses.

The properties of ice particles are especially com-
plicated because ice particles that have the same mass
do not necessarily have the same size or shape. Con-
ventional detailed cloud models are not able to resolve
the complicated shapes of ice particles and their growth
habits, which are important factors that control both the
ice-phase microphysics and chemistry. Those models
that have considered the shapes of ice crystals tended
to overlook the possible changes of primary habits or
the temperature and supersaturation dependence of the
secondary habits (Hindman and Johnson 1972; Hall
and Pruppacher 1976; Miller and Young 1979). None
of these models was able to describe the change with
time of the shapes of ice crystals due to vapor deposi-
tion, riming, or aggregation under varying ambient
conditions.

The multicomponent framework described here cat-
egorizes cloud particles simultaneously and indepen-
dently according to their various physical and chemical
properties. In order to describe the liquid cloud parti-
cles, a mass component m, for one major solute (usu-
ally sulfate ) is used in addition to the usual water mass
component m,,. The representation of ice-phase parti-
cles requires a separate framework. One physical pa-
rameter that distinguishes the ice-phase particles from
the liquid-phase particles is their shapes. Thus, a shape
factor ¢ (axial ratio of a representative spheroid) is
included in the ice particle framework in addition to
the properties used in the liquid-phase particle frame-
work. In this study, 45, 20, and 11 bins are used for the
water mass, solute mass, and shape components, re-
spectively. Note that other minor physical and chemical
properties of the particles (e.g., temperature, density,
minor solute masses) do not require detailed bin reso-
lution.
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The equation for the evolution of the number density
of liquid-phase particles n, is written as (cf. Clark
1973; Hall 1980; Flossmann et al. 1985)

and

—-=—V-(Vn,,)+—§z-(and)+C, (0

ot

where V is the air velocity and V., is the terminal fall
speed of the drop. The first two terms on the right-hand
side represent the effects of advection and sedimenta-
tion, respectively. The last term represents changes of
n, due to microphysical and chemical processes, the
main focus of this paper. Aside from any spatial de-
pendence, n, is a function of (m,,, m,, t) and has units
of (kg water) ™' (kg solute) ™' (kg air) . The changes
of n, can then be subdivided into the changes in the
components m,, and m,:

_ o

Y

ony

+ C, + C,,
ot

adv,s

(2)

adv,w

9y

where the subscripts ‘‘w”’ and ‘‘s’’ denote the water
and solute components, respectively. The first two
terms on the right-hand side represent processes that do
not involve other particles, such as water vapor con-
densation (m, component) or trace gas sorption and
chemical production of solute (m, component). They
are commonly expressed in a form similar to the ad-
vection term in (1) (cf. Clark 1973; Hall 1980; Floss-
mann et al. 1985):

ony ad dm,,

o |y,  Om. (n" dr ) (32)
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_6; adv,s T ams (nd dt ) ’ (3b)

except that the advection is along the component axes
(m,. and m,) instead of along the spatial coordinates. In
spectral space, the growth rates dm,/dt and dm,/dt
serve as analogs to the advection velocities that appear
in physical space. The last two terms in (2) represent
processes involving other particles, such as coalescence
and breakup. For example, C, and C; for the coales-
cence process are represented by the stochastic collec-
tion equations (cf. Telford 1955):
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where u and v are the masses (in either m,, or m, com-
ponent) of the colliding particles and K is the particle
interaction kernel. Note that the interaction kernels in
(4b) are expressed as a function of the water masses
because the solute masses normally contribute little to
the drop sizes. The change of the number density func-
tion n; (m,,, m,, ¢, t) of ice-phase particles due to mi-
crophysical and chemical factors can similarly be writ-
ten as
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where the subscript ¢ denotes the shape factor com-
ponent and n; has units of (kg water) ™! (kg solute) ™!
(unit ¢) ' (kg air) ~'. The moment-conserving scheme
discussed next is used to solve the above time evolution
of particle spectra within the multicomponent frame-
work.

b. The hybrid bin method

Bin models group particles of similar properties into
representative ‘‘bins’’ to reduce the particle population
to a manageable number of systems. The total particle
number in each bin category is introduced as the group-
ing parameter. Due to growth or decay or to trace—
chemical interactions, particles will transfer between
bins in the framework. Various numerical methods
have been developed to solve the particle transfer prob-
lem. For example, Berry (1967), Berry and Reinhardt
(1974), Gelbard and Seinfeld (1978), and Flossmann
et al. (1985) used a semi-Lagrangian scheme that cal-
culates the growth of particles at discrete grid points.
The new values are then interpolated back to the orig-
inal grid points. However, their method does not guar-
antee the conservation of mass and is rather time con-
suming (Tzivion et al. 1987). Young (1974a) circum-
vented this problem by developing a bin method that
assumes a linear distribution function within a bin.
Knowledge of the total number and the aggregate bin
property value (e.g., total particle mass) allows the lin-
ear distribution function to be determined from con-
servation laws. Young’s continuous-bin method is con-
ceptually similar to the method of moments proposed
by Stieltjes (1894) and Golovin (1963), which has
been applied by Drake (1972), Enukashvilly (1980),
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FiG. 1. Linear distribution function of two moments.

Tzivion (1980), and Tzivion et al. (1987). These mo-
ment-conserving schemes are highly accurate but less
flexible in dealing with different growth kernels and
bin-sizing factors.

In this study, we have used a hybrid bin method, an
approach that is very flexible and conceptually easy to
understand. The hybrid bin method calculates the total
growth of particles in each bin using their mean masses.
By conserving two moments (number and mass), the
continuous bin method, which is similar to Young’s
method, is then used for the transfer of particles be-
tween bins. The following gives the details of the hy-
brid bin method.

1) SUBGRID LINEAR DISTRIBUTION FUNCTION

The distribution of a number density function within
a given grid interval (bin) can be approximated by a
linear equation with knowledge of the first two mo-
ments. The number density function, as shown in Fig.
1, is assumed to be linearly continuous within a bin and
is expressed as

n(x) = nyg + k(x — xp), (6)

where x is the independent variable of the number den-
sity function, n, is the number density at the midpoint
xg of the bin, and £ is the slope of the distribution func-
tion. Examples of the independent variable x are m,,,
my, and ¢, as discussed previously. The hybrid bin
method does not operate on the number density func-
tion itself; rather, it keeps track of the two moments.
From the law of conservation, the total number N (ze-
roth moment) and the total or aggregate bin property
M (first moment) can be expressed as

N = J:Z n(x)dx, M= J:Z xn(x)dx, 7

where x; and x, are, respectively, the lower and upper
limits of the bin. Take the most frequently considered
property —mass—as an example; then x is the particle
mass and M is the total mass of particles in the bin. By
inserting (6) into (7), ny and k can be derived as

_ 12(M — xN)

N
= d %k
o o (x, — xl)3

X2 — X

» (8)
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where x, = (x, + x,)/2. Note that N is the number of
particles per kilogram of air and M has the units of x
per kilogram of air. The number density function can
readily be derived from the knowledge of N and M for
calculations that involve particle spectra. By way of
example, Fig. 2 demonstrates how the linear distribu-
tion function approximates a sinusoidal curve with a
rather high accuracy. Since the linear distribution func-
tion is only a first-order approximation, the physically
unrealistic discontinuities at the bin boundaries (e.g.,
atx = 7 in Fig. 2) are inevitable. Whereas it is possible
to use a higher-order form of (6) that would eliminate
discontinuities at the bin boundaries (Chen 1992, p.
111), such elaboration is not necessary. As will be
shown in the examples given in section 5, such discon-
tinuities do not cause serious numerical problems.

The number density functions representing the cloud
particles tend to be discontinuous in nature. As a result,
the linear number density function given in (6) may
occasionally become negative (see Fig. 3a), especially
for bins containing the boundaries of the actual spec-
trum. Violation of the positiveness condition will lead
to unrealistic negative numbers of particles, as well as
numerical diffusion. Enukashvilly (1980) treated the
problem by applying a zeroth-order approximation
function, which forces the distribution function to be
zero at the initially negative end, as shown in Fig. 3b,
to ensure the positiveness. To be more realistic, how-
ever, the distribution function should be allowed to oc-
cupy only part of the bin, as demonstrated in Fig. 3c.
Thus, once either n(x;) or n(x;) is found to be less
than zero with the k and n, derived previously, the dis-
tribution function should be modified as

(9

The parameters x, and k, are derived by inserting this
modified distribution function back into (7) such that

n(x) = ky(x — x4).

3IM 2N
=—— =2, ky = ——, f <0,
Xy Y; X, ky o — 1)’ or n(x,)
3M —2N
=— —2x, ky = , f < 0.
Xy N X1, Ky = 1) or n(x,)

(10)

The piecewise linear distribution function (6) can be
applied directly into growth equations (1) through (5).
However, the problem of closure occurs when the
growth kemnel is a high-order polynomial. Moreover,
the growth equation is often impossible to solve when
the growth kernel is transcendental. To avoid such
problems, we separate the growth calculation from the
particle transfer scheme. This separation is done by first
applying the semidiscrete bin method, which assumes
that all particles in the bin have the same average prop-
erties, to calculate the total growth. In other words, we
use the ‘‘growth of the mean’’ dx/dt to represent the
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‘“‘mean growth’’ (dx/dt). The condensation process,
for example, can be represented by

dx
— 1/3
— = Bsx"'",

& (1)

where x represents the mass of the drop, B is a constant,
and s is the supersaturation. Then, the overall mass
growth [e.g., Eq. (3a) integrated from x, to x,] for
drops in a bin during time interval &t is approximately

M = NB5x'6t, (12)

where X = M/N and 5 is the mean saturation ratio dur-
ing time 6¢t. Similarly, the overall mass growth for
drops in bin i by collecting drops in bin j due to coa-
lescence is approximated as

6M = N, N%;K (%, )8, (13)
where K(x;, X;) is the collection kernel between drops
of masses x; and ¥;. The new total mass (before per-
forming the bin shift) is then M' = M + 6M, while the
total number N remains unchanged. The transfer of par-
ticles between bins will then be performed using the
bin-shift method described in the next subsection. The
hybrid bin method yields results that are quite accurate
for small enough bin sizes, and if necessary, a modi-
fication factor is available to account for any nonlin-
earities (Chen 1992, p. 120). This hybrid scheme can
vastly reduce the complexity of the governing equa-
tions and the computational time.

2) BIN SHIFT

Bin shift is conceptually very similar to advection in
Eulerian coordinates. If the component variable x is the
distance, the growth rate dx/dr would then be the ad-
vection velocity. The bin shift is accomplished by first
calculating the growth (advection) in a Lagrangian co-
ordinate and then remapping the new distribution back
into the original coordinate. Normally, one would de-
rive the linear distribution function (6) that occurs “‘be-
fore’” the growth, as done by Young (1974a). How-
ever, an advantage of separating the growth scheme
from the bin-shift scheme is that we can alternatively
assume that the distribution function is linear ‘‘after’’
the growth. We will call the former the pregrowth lin-
ear method and the latter the postgrowth linear method.

In the pregrowth linear method, a linear distribution
function is derived using the total number and mass
before the growth, and the distribution function is as-
sumed to maintain its linearity (slope) during the
growth (i.e., use N and M to obtain ngy, x;, and k). As
illustrated in Fig. 4a, each of the bin limits would be
shifted the same as the change in the midpoint (x;). In
order to maintain the original slope of the distribution,
clearly, one must assume that every particle in the bin
grows at the same rate. Such an assumption is appro-
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priate only when the growth rate dx/dt is independent
of x.

When the growth equations are nonlinear with re-
spect to x, the shift of the two bin limits and the mean
may not be exactly the same, resulting in a change of
slope. The originally linear distribution function then
becomes nonlinear after growth, and a straightforward
linear bin shift would not always yield an accurate cal-
culation. This problem can be avoided by applying the
postgrowth linear method. The new total mass, M’
=M + 6M, of the postgrowth distribution is derived
as before from the decoupled semidiscrete scheme. In
contrast to the pregrowth linear method, however, we
now have the freedom of calculating the two new bin
limits independently, as shown in Fig. 4b. For a known
growth function dx/dt, the shifts of the bin limits dx,
and dx;, are calculated in the same way that 5x is. In the
case of condensational growth, when (11) is applica-
ble, the approximations éx, =~ 6x(x,/¥)"* and 6x,
~ §x(x,/x)""? can be used to avoid the generally more
complicated growth calculation. For the coalescence
growth of drops in bin i collecting drops in bin j, the
shifts of the bin limits are simply éx, = x;; and ox;
= X;,, where x;, and x;, are the bin limits of bin j. Note
that the component variable x; and x; here can be either
the water mass or solute mass for collectional growth
processes (e.g., coalescence, riming). The ny and k of
the new distribution function can be derived by apply-
ing the total number N, new total mass M’ = M + §M,
and the two new bin limits x| = x; + 6x, and 2x; = x,
+ 6x, to (8). The postgrowth linear method has the
advantage over the pregrowth linear method by ac-
counting for the slope change of the distribution func-
tion, but it has the disadvantage of requiring calcula-
tions of dx, and éx,. If the growth rates at the bin limits
x; and x, are unknown or do not have a clear relation-
ship to the shift of X, as discussed in the above exam-
ples, then the pregrowth linear method must be used.
Otherwise, the postgrowth linear method provides bet-
ter accuracy and is preferred.

TS

ANALYTICAL CURVE n(x) = sin(x)+1
FIRST ORDER HT

12

FIG. 2. First-order approximation of the curve n(x) = sin(x) + 1
using the continuous-bin method.
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(a)

(b)

(c)

Xl X, X'z

FiG. 3. Positiveness of the linear distribution function: (a) before
adjustment, (b) Enukashvilly’s zeroth-order approximation, and (c)
method proposed here.

The particles in that part of the distribution that ex-
ceed the original bin limits during growth must be
transferred to the next bin. The number and mass that
need to be transferred can be determined by the follow-
ing functions:

AN = fy(ny, xo, k, X2, x3);

AM = fy(no, X, k, X2, x3) for éx >0,
AN = fu(ny, X0, k, x1, x1);
AM = fy(ng, %o, k, x1, x,) for 6x <0, (14)

where 6x (=6M/N) is the mean growth over the time
step 6t, and fy and fj, are defined as

fN(nOr Xo» k7 a, b)

Ef n(x)dx=(b—a)l:no—k(x0~a;b):| R

fM(no,X(), k1 a, b)

b* -4’
2

3_ 3 2 __ 2
+k<b 3" —xk 2“), (15)

= Jj’ xn(x)dx = ny
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where a and b are the appropriate lower and upper in-
tegration limits, respectively. The total number and
mass left in the original bin are thus

N' =N- AN,
M = (M+ M) - AM, (16)

where M is from the semidiscrete method mentioned
previously. The same principle applies when the dis-
tribution shifts over multiple grids.

The positiveness check mentioned previously is im-
portant for reducing numerical diffusion and ensuring
the conservation law. With the positiveness check, par-
ticle transfer is not always performed in each time step.
The new distribution may still lie within the range of
the original bin limits, as shown in Fig. 4c. When the
positiveness criterion is violated, the number and mass
that need to be transferred can still be determined from
(14) by applying new parameters x, and k, so that
when éx > 0,

AN=0; AM =0, for x,<x,
AN =fN(O’ x*’ k*a X2, xé);

AM = (0, x4, ky, X2, x3) for n(x)) <O
AN = (0, x4, kg, X2, X3);
AM = (0, x4, kg, X, xg) for n(x) <0 (17a)

and when 6x < 0,

(a)

.
XX X,

X %

F1G. 4. Schematic diagram of (a) the pregrowth linear distribution
function and the bin shift (the two bin limits shifted by the same
amount), (b) the postgrowth linear method (the two bin limits shift
by different amounts), and (c) incomplete distribution, where the
white area is the original distribution and the shaded area denotes the
new distribution.
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AN=0, AM =0, for
AN = fu(0, Xy, ks, X, X1);
AM = f,(0, x4, kg, x4, x,) for
AN = fiu(0, xy, ks, X1, 31)5

AM = (0, x4, kg, x{, x,) for

X > x5

n(x) <0

n(x) <0. (17b)

The hybrid bin method works the same whether the
component is water mass, solute mass, or particle
shape. Since the particle framework applied in this
study has more than one component, the bin shift must
be performed in both the water and solute axes for the
coalescence process because large drops accrete both
water and solute mass from small drops. All of the com-
ponents are independent of each other, so we applied
a ‘‘directional splitting’’ method that amounts to the
separate evaluation of the bin shift along edch com-
ponent axis.

The hybrid bin method can also be applied to the
spatial distribution of particles. One special implemen-
tation of the spatial components is the gravitational
‘“‘advection’’ (sedimentation ) of particles. If the parti-
cle distribution within a spatial grid were not taken into
account, precipitation would tend to propagate down-
ward too fast due to numerical diffusion. The spatial
bin component is taken exactly the same as the vertical
spatial coordinate. Each group of particles has a height
variable that has a value within the range of its spatial
bin limits.

3. Microphysics
a. Liquid-phase microphysics

The liquid-phase microphysical processes included
in the model are the deliquescence and activation of
soluble aerosol particles and the growth of drops by
condensation and collision—coalescence. Since the ba-
sic theory of these processes has been well explained
already (e.g., Pruppacher and Klett 1978), only the
special schemes applied in this study are described
here.

1) CONDENSATIONAL GROWTH

The growth of cloud condensation nuclei (CCN)
into cloud drops is calculated explicitly in this study
from an initial CCN spectrum that may be either a pre-
scribed function or obtained from observations. We
first consider the deliquescence of dry particles into
their wet (haze) state, as well as the hysteresis cycle
(Chen 1992, 18-24). Since large haze particles have
large condensation time constants (Chen 1992, p. 164),
one cannot assume that all haze particles reach their
equilibrium sizes on the Kohler curves within a typical
time step. Kinetic calculations are thus applied to the
condensational growth of both the haze particles and
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cloud drops. The activation of haze particles into cloud
drops, then, is automatically accounted for by properly
solving the growth equations.

A difficulty commonly encountered in the simulation
of condensation and evaporation processes using a bin
(category) model is the large number of equations
needing to be solved simultaneously. The total number
of equations for a sizable particle framework can be
too large for differential equation solvers based on ma-
trix methods. It is thus necessary to use special numer-
ical methods for the diffusional growth problem. Clark
(1973) applied a semianalytical method to calculate a
time-averaged saturation ratio during one time siep.
This method avoids some numerical instability prob-
lems and allows the use of relatively large time steps.
In this study, we applied a similar approach by using
Brown’s quadratic exponential smoothing method
(Brown 1963, pp. 140-144), a technique that makes
forecasts based on past values, to give more efficient
and accurate predictions of the supersaturation (Chen
1994). A special method is then used to solve the dif-
fusional growth equation (see appendix ). The temper-
ature of the droplets is calculated by assuming steady-
state heat and mass transfer (cf. Pruppacher and Klett
1978, p. 420).

2) HYDRODYNAMIC INTERACTIONS

The growth of cloud droplets by collision—~coales-
cence is calculated using the stochastic approach of
Telford (1955) to solve the collection equation, given
earlier as (4) (cf. Berry 1967; Tzivion et al. 1987).
The numerical results of de Almeida (1979) are used
for the collision efficiencies, while the empirical rela-
tionship of Low and List (1982a) is used for the coa-
lescence efficiencies. The empirical formulas of Low
and List (1982b) and List et al. (1987) are used for the
distribution function of liquid fragments following
drop breakup. Adjustment on the mode of their distri-
bution functions was made to ensure mass conservation
(Chen 1992, p. 38). For the redistribution of solute in
the drop fragments, it is assumed that when one of the
parent drops gains mass during a collision event, it does
not contribute any of its original mass to the fragment
drops. In this case, the mass of the fragment drops must
be from the other parent drop, the one that also pro-
vided the extra mass to the first parent drop. If both of
the parent drops lose mass, neither one gains any mass
or solute from the other, and their original concentra-
tions are preserved. The fragment drops are then as-
sumed to have the same concentration of the mixture
of the masses that were stripped away from the parent
drops.

A drop may also break up spontaneously without
interacting with other drops. An upper limit of 4.5 mm
(spherical equivalent radius) is set as the largest stable
drop size, a threshold established by the wind tunnel
measurements of Pruppacher and Pitter (1971). Any



2620

drop that exceeds this size, because it either grew by
coalescence or arose from the melting of ice or shed-
ding during riming, is assumed to break up spontane-
ously. The breakup size distribution follows the for-
mula given by Srivastava (1971), and all fragment
drops retain the solute concentration of the parent drop.

b. Ice-phase microphysics

In this study, we included the ice-phase processes of
primary ice nucleation, diffusional growth, hydrody-
namic collection (riming ), melting, drop shedding dur-
ing wet growth, aggregation, and secondary generation
of ice particles. Special attention has been paid to the
determination of the shapes of the ice particles for each
growth process.

1) ICE NUCLEATION

Four types of common ice nucleation processes are
considered in this study—heterogeneous deposition
(or sublimation) nucleation, homogeneous freezing,
heterogeneous freezing, and contact nucleation. Ho-
mogeneous deposition nucleation is not likely in the
atmosphere and is not considered here. Except for the
homogeneous freezing, all three other nucleation pro-
cesses require the presence of ice nuclei (IN). Yet the
properties and distribution of IN in the atmosphere are
not well known. Georgii and Kleinjung (1967) sug-
gested that large aerosol particles (LAP), with radii
greater than 0.1 um, are potential ice nuclei (IN), and
that the IN to LAP ratio is about 1/400 at —20°C.
Fletcher (1962) gave the effective IN concentration ap-
proximation as

N[NerXp(bAT), (18)

where A and b are constants, and AT = T — T, is the
deviation of the temperature T from T, = 0°C. The
typical concentration of effective IN in the atmosphere
is one per liter at —20°C, and saturation with respect to
liquid water is generally assumed. Combining Fletch-
er’s formula and the IN to LAP ratio, we can estimate
the number concentration of LAP (potential IN) to be
about 400 per liter. Young (1974b) deduced the num-
ber concentration of contact nuclei to be 230 per liter
from Blanchard’s (1957) experimental data, which is
of the same order of magnitude as the estimated LAP
number concentration. Therefore, the LAP are assumed
to serve as contact nuclei as well in this study, with a
number concentration of 400 per liter that is indepen-
dent of temperature.

As indicated in (18), Fletcher suggested that the ef-
fectiveness of LAP to act as IN is a well-defined func-
tion of temperature. Gagin (1972) and Huffman
(1973) found, in contrast to Fletcher’s suggestion, that
the number concentration of effective IN increases with
the supersaturation over ice s;, according to the rela-
tionship
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NlN= Csi'(’ (19)

where C and k are constants. The temperature depen-
dence in Fletcher’s finding is merely a reflection of the
temperature dependence of ice supersaturation when
liquid water saturation is maintained (Huffman 1973).
We have thus adopted the more general supersaturation
approach (19), which is converted into a rate equation
in terms of the time rate of change of supersaturation

(20)

The effective IN considered in (20) are assumed to
nucleate immediately and to be removed from the LAP
population. Also, it is assumed that the nucleation pro-
cess is irreversible (i.e., a decrease in supersaturation
does not result in a decrease in the number concentra-
tion of ice particles) and that dN\y = 0.

The other modes of ice nucleation were treated as
follows. The scheme of Slinn and Hales (1971) is used
to calculate the rate of contact nucleation through ther-
mophoretic and diffusiophoretic transport and Brown-
ian diffusion, using LAP as contact nuclei. For the ho-
mogeneous freezing of droplets, an empirical fit to the
data presented in Fig. 9 of DeMott and Rogers (1990)
is used for the nucleation rate (in cm™> s ™'):

Jhom = 8 X 104 exp[—1.75(AT + 34)]. (21)

The rate of heterogeneous (immersion) freezing
(in ecm™ s ') is calculated using the empirical formula
of Danielsen et al. (1972), which is expressed in terms
of the cooling rate:

dar
Jhet = —yexp[— y(AT + 7)]; AT < =7°C, (22)

where y = 0.68 K™!, and J,,, = 0 when AT > —7°C.
Again, it is assumed that the nucleation process is ir-
reversible and that J,., = 0.

2) DIFFUSIONAL GROWTH

The growth of ice crystals by vapor deposition is
more complicated than that of droplets, partly because
of their nonspherical shapes. The nonspherical shape
of an ice crystal introduces complicated boundary con-
ditions, which impose great difficulty in solving the
Laplace form of the diffusion equation (Chen and
Lamb 1994). However, Jayaweera and Cottis (1969)
have shown that spheroids are good analogs for simple
columnar and platelike ice crystals. Therefore, the
shapes of all types of ice particles are approximated by
spheroids in this study.

By examining the crystal surface kinetic and gas
phase diffusion effects, Chen and Lamb (1994 ) theo-
retically derived the governing equation for the shape
change of ice crystals due to depositional growth and
showed to first approximation that the differential
growths along the ¢ and a axes can be written as



15 SEPTEMBER 1994

de _

F’
da ¢

(23)

where I is the inherent growth ratio and ¢ = c¢/a is the
aspect ratio. The inherent growth ratio I is the ratio of
the condensation coefficients for the basal and prism
faces and is primarily a function of temperature. The
effect of ventilation on the shape changes is also in-
cluded in the scheme. The above equation, when ex-
pressed in an integrated form (¢ « a"), has great re-
semblance to the empirical power-law formulas derived
from observational data (e.g., Ono 1970). Moreover,
the observed values for the exponent in the integrated
relationship match very well with the inherent growth
ratio measured in the laboratory. By combining (23)
with the mass growth equation, Chen and Lamb also
provided a realistic way to describe the change of mass,
volume, and shape of ice crystals simultaneously in re-
sponse to different environmental conditions. They also
showed that the change of ¢ due to vapor deposition is
loglinear. Thus, the simple pregrowth linear method
[section 2b] can be used for the bin shift of particle
shape when log ¢ is used as the component axis. All
such aspects of the depositional growth process are in-
cluded in the current model.

3) GROWTH BY COLLECTION

The stochastic approach is again used to treat the
hydrodynamic interactions between an ice crystal and
other particles. The collision efficiencies for ice crystals
of different habits collecting small drops (Pitter and
Pruppacher 1974; Schlamp et al. 1975; Pitter 1977), as
well as the collision efficiencies for large raindrops col-
lecting ice crystals (Lew and Pruppacher 1983; Lew et
al. 1985), are compiled into a lookup table as functions
of the particle Reynolds number. The coalescence ef-
ficiency for droplets in contact with ice particles is as-
sumed to be unity. The density of the rime ice follows
the empirical formula of Heymsficld and Pflaum
(1985), with impact velocities from Rasmussen and
Heymsfield (1985). The shapes of rimed ice particles
are simplified in such a way that all droplets are ac-
creted along the short axis (i.e., fixed long-axis length).
It can be shown that, with a fixed long-axis length, the
shape change due to riming is linear in log(¢) scale
such that the pregrowth linear method can be used for
the bin-shift scheme.

The lookup table mentioned above is also used for
the collision efficiencies between two ice crystals, ex-
cept that the Reynolds number of the collected crystal
is used in place of that of the collected drop. The effi-
ciency of crystals to aggregate after collision is not well
known, but Mitchell (1988, Table 1) has shown that
the aggregation efficiency E,,, is dependent on the hab-
its and physical structure of the crystals. The more in-
tricate the shape, the greater the magnitude of E,,, be-
comes. We found that the relationship
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(24)

fits Mitchell’s data fairly well. Here, p; is the apparent
crystal density given by Chen and Lamb (1994), and
po is the bulk density of ice. Since aggregation involves
two ice crystals with different apparent densities, the
volume-weighted mean density of the two crystals is
used for p; in (24).

The change of ice particle shape due to aggregation
is also poorly known. Mitchell et al. (1990) showed a
mass-dimension relationship for snow aggregates in the
form of m = aD?, which can be expressed in a differ-
ential form:

Ez\gg =1- pi/pO

—=-, (25)

where m is the crystal mass, D is the crystal maximum
dimension (major-axis length), and « and S are coef-
ficients that vary with crystal type. The values of 3
ranged from 1.7 to 2.5, with a mean around 2. The
mass-dimension relationship (25) applies to snow ag-
gregates consisting of many single crystals. At the other
extreme, for crystal aggregates consisting of only two
single crystals, Higuchi (1960), Kajikawa (1985), and
Kajikawa and Heymsfield (1989) showed that the
‘‘separation ratio,”’

2L

§=—""
D1+D2

(26)
representing a normalized distance between two plate-
like crystals that are in plane contact, has its highest
frequency between about 0.55 and 0.65, where L is the
distance between the centers of the two combined crys-
tals having maximum dimensions D, and D,. For crys-
tals of similar size and mass (i.e., D, =~ D, = D, m,
=~ m, = m), the increase in particle dimension dD that
results from the collection of the second crystal is sim-
ply L, so (26) allows us to state

dD
— ~ 5.

D (27)

Comparison of (27) with (25) suggests, for crystals of
similar mass (dm = m), that the magnitudes of § and
1/8 should be comparable. The available data, how-
ever, show that 1/ is typically somewhat less than S.
Strictly, (26) applies to crystal pairs that are in plane
contact. Ice crystals with more complicated structures
may combine at a certain intersection angle #. The mag-
nitude of # should vary with the shapes of the colliding
crystals, and it could be quite large for crystals that are
highly branched and of low apparent densities. When
a certain crossing angle exist, S of the crystal pairs
would become closer to 1/8.

Equations (25) and (27) do not account for the
changes in the minimum dimensions (minor-axis
length) of the crystal aggregates, but such information
is also required for determining the aspect ratio of the



2622

crystal aggregate for this study. By considering (25)
and (27) and the geometry of crystals crossing at an
arbitrary angle 6, we find that the changes in the long
(major) and short (minor) axis lengths due to the col-
lection of a crystal with long and short axis lengths of
D, and Dy, respectively, can be parameterized as

5DL ~ [)\Ds + )\,DL]S

6Ds =~ [ND, + N Ds], (28)
where A = sinf, \' = cosf = V1 — \2, and S is set
equal to 0.6. As a first-order approximation, \ is as-
sumed to be linearly dependent on the volume-
weighted crystal apparent density (smaller § for a
higher p;), such that

A = M (1 = pi/ o), (29)

where \,.x corresponds to the crossing angle having a
maximum probability. We assume this most likely an-
gle to be about 45°, so we set A« = 0.7. The param-
eterization scheme (28) guarantees a lower apparent
density and a more spherical shape for crystals that
grow by aggregation.

4) MELTING AND SHEDDING

In this study, we keep track of the total heat (en-
thalpy) of the ice particles, as modified by vapor dep-
osition, riming, melting, and heat conduction to/from
the air. As for droplets, the assumption of steady-state
heat and mass transfer is applied (Chen 1992, 177~
179). The total heat is defined as the sum of the latent
heat and sensible heat (integrated from a reference state
at Ty = 0°C). We decide whether meltwater exists in
an ice particle according to the criterion

hi(T) > hi(Ty) =0, (30)

where h; is the specific total heat of the ice particle and
h; (Ty) is the specific total heat of ice at 0°C. Such a
criterion simply means that if the total heat of the par-
ticle exceeds that of a bulk ice particle with the same
mass at 0°C, the excess heat must be from the unfrozen
part of the particle. The mass of the meltwater is then
determined by reexamining the total heat of the parti-
cle:

H; = m,h,(To) + mh;(T,), (31)

where h,(T,) is the specific total heat of water at 0°C
and m,, and m; are the liquid and solid portions of the
mass, respectively. Since we use the thermodynamic
melting point (7,) as the reference state, h;(To) = 0,
and since h,(Ty) = h;(T,) + [(To) = ,(T,), we have

I(To)

where ; is the latent heat of freezing. The liquid water
tends to fill in the available void spaces in the ice par-

(32)

m,,
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ticle under conditions of spongy growth. Note that, with
the depositional density and the rime density given, this
model also considers the apparent (circumscribed ) vol-
ume of ice particles and, thus, the void spaces.

When no more porous space is accessible, meltwater
will accumulate on the surface of the ice particle and
form a layer of water over the ice surfaces when the
diameter of the ice core is less than 9 mm (Rasmussen
et al. 1984). The aspect ratio of such ice particles is
assumed to be the same as the ice core. Those with
larger cores, however, tend to form a water torus near
the equator of the particles (Rasmussen et al. 1984).
In this case, the short-axis length is kept constant while
the meltwater accumulates along the long axis. Shed-
ding may occur when the mass of the water torus is
greater than the critical mass (Rasmussen and Heyms-
field 1987):

m}¥ = 0.268 * 0.1389m o, (33)

where m.. is the mass (in g) of the ice core including
the unfrozen part. An empirical fit to Fig. 8 of Ras-
mussen et al. (1984) is used to determine the amount
of water shed:

Mgea =~ m,, — m/[1 + 10.67(d — 0.9)

—10.81(d — 0.9)% + 10.26(d — 0.9)°], (34)

where m, is the total mass of the particle and d is the
diameter of the ice core in centimeters. The water that
is shed is then turned into raindrops. The number and
size distribution of the shedded drops are not well stud-
ied, so we adopt the spontaneous breakup scheme for
liquid drops in determining their size distribution.

The shedding of drops during melting is treated sim-
ilar to the rime—shedding process. The melting of the
ice particles is assumed to occur preferentially along
the long axis of the ice core. Such an arrangement is
also meant to simulate the melting of dendrites or nee-
dles from their tips first. The freezing of wet ice is taken
to be exactly the opposite of the melting process.

The depression of the melting point due to the pres-
ence of solute (cf. Atkins 1986, 172—~173) is also con-
sidered in this study. This process is important for
evaporating ice particles. The loss of water mass during
evaporation leads to an increase of solute concentration
and eventually to a state such that the remainder of the
ice particle melts at subfreezing temperatures and exists
as a haze particle. The presence of solute may also sup-
press the homogeneous freezing process, especially for
haze and interstitial aerosol particles (Sassen and Dodd
1988, 1989; Heymsfield and Miloshevich 1993).

5) SECONDARY ICE PRODUCTION

Of the three types of fragmentation processes that
can occur during ice-phase hydrodynamic interactions
and melting, the one that creates new liquid-phase par-
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ticles (shedding) has already been discussed. The other
two processes produce new, ‘‘secondary’’ ice particles
via rime—splintering (Mossop et al. 1972; Hallett and
Mossop 1974) and collision—fragmentation (Hobbs
and Farber 1972; Vardiman 1978). For the rime—splin-
tering process, we adopted the scheme of Gordon and
Marwitz (1981) and Cotton et al. (1986), who used
the data from Mossop (1976) to give the number of
splinters produced for every 250 drops with diameter
> 24 pm as a function of temperature. Fragmentation
is not included in this study.

4. Chemistry
a. Liquid-phase chemistry

The characteristic times for ionic dissociation are
much smaller than for any other chemical or micro-
physical process considered in this study. Thus, ionic
dissociation is considered to reach equilibrium instan-
taneously within a typical time step. We therefore re-
duce the number of equations by combining related
ions into a single species. For the reactions considered
in this study, CO,-H,0, HCO3 , and CO3™ are grouped
as the C(IV) species; NH;-H,0, and NH; are the
N(III) species; SO,-H,0, HSO3, and SO3™ are the
S(IV) species; and HSO; and SO3~ are the S (VI) spe-
cies. The aqueous-phase oxidation of S(IV) by H,0,
and Qs is also considered. The dissociation coefficients
and rate constants used here are from Pandis and Sein-
feld (1989).

Many cloud chemistry models have assumed that an
equilibrium is maintained between the gas and aqueous
phase at all times (e.g., Moller and Mauersberger
1992). However, Walcek and Pruppacher (1984), Hill
(1988), Rood and Currie (1989), Shimshock (1989),
and Wexler and Seinfeld (1990) showed that Henry’s
law equilibrium does not always exist between water
drops and the air. In this study, we use a more detailed
mass transfer approach for the liquid-phase chemistry,
one that does not assume gas—liquid equilibrium (e.g.,
Schwartz 1986; Jacob 1986; Pandis and Seinfeld
1989).

The differential equations describing the mass trans-
fer and chemical reactions are usually stiff in nature.
Moreover, for category models, each drop category re-
quires a separate set of these equations. Thus, special
numerical techniques are normally required. Here, we
adopted the predictor—corrector method of Young and
Boris (1977) to solve the equations of mass transfer
and chemical reactions simultaneously.

The shift of the drop spectrum in the solute com-
ponent, either due to sorption or internal chemical re-
actions, is similar to its shift in the water component
due to condensation. However, the mass change of the
major solute (component variable) due to chemical
processes depends on the solute concentration and the
drop size, not on the absolute solute mass. A bin shift
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(section 2b) in the solute component inevitably in-
volves the properties in the water component and cre-
ates the problem of ‘‘component crossing.”” Neverthe-
less, the production of sulfate due to sorption or aque-
ous-phase reactions is normally small compared with
the existing sulfate in the drop for a typical time step.
So, to a first approximation, we assume that the rate of
change of solute mass is fixed for all drops in the same
bin so that the shift of the bin limits is the same as the
shift of the mean. Note, however, that the postgrowth
linear, instead of the pregrowth linear, method would
nevertheless have to be used for the bin shift scheme
if the solute axis were to be gridded nonlinearly (e.g.,
log spacing ). On the other hand, the shift of the particle
spectrum in the solute component due to processes that
involve other particles (e.g., coalescence, riming) de-
pends on the amount of solute contained in the col-
lected particles. In this case, the process is the same as
that for the shift in the water component, with solute
mass replacing water mass in the growth equations. The
same principle applies to the ice-phase processes.

b. Ice-phase chemistry

The chemistry that occurs in the ice phase is often
thought to be less important than that in the liquid
phase, so it is ignored in most cloud chemistry models.
Yet, there is increasing evidence that the ice-phase
chemistry cannot be totally neglected (e.g., Borys et al.
1988; Chen and Lamb 1990). Also, trace chemicals
may affect the growth or evaporation of ice crystal
(Chen and Crutzen 1994). Therefore, for a cloud
chemistry model to be complete, it must include the
ice-phase chemistry. In this study, we have focused on
the physical processes that control the removal of trace
chemicals by ice-phase precipitation. The chemical re--
actions occurring in the ice phase or on the particle
surfaces are potentially important, but they are not in-
cluded at this stage due to their complicated nature and
a general lack of information.

The diffusion process not only occurs between the
gas and liquid phases but also between the gas and ice
phases in clouds. Although solute tends to be excluded
from the bulk ice (Gross 1968) and remain on the sur-
face of ice particles, the large surface to volume ratios
of the ice particles makes them potentially good can-
didates for removing trace chemicals from the air. Sev-
eral experimental studies have been conducted to ex-
plore the sorption of SO, into ice (e.g., Sommerfeld
and Lamb 1986; Clapsaddle and Lamb 1989; Valdez
et al. 1989). Chen and Lamb (1990) compiled these
results into empirical formulas, among which we have
adopted the following expression:

(35)

[SAV)aep = ¢ eXP(%)Pé&,

where [S(IV )]y, is the S(IV) concentration in the va-
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por-grown ice, Pso, is the partial pressure of gaseous
SO,,c=80X%X 10"*Matm "?, and d = —6.06 X 10°
K. This formula interprets sorption as a bulk process
instead of a surface phenomenon. The sorption con-
centrations for other trace chemicals, as well as the in-
teractions between them, are not well known and need
further experimental investigation before they can be
included in the model.

Riming causes ice particles to collect not only water
but also some of the solutes contained in the cloud
drops. The fast propagation of ice within the super-
cooled drops during the adiabatic stage of freezing may
result in the physical entrapment of the dissolved gases.
Past studies of gaseous entrapment in freezing water
drops have been sparse. Lamb and Blumenstein
(1987), as well as Iribarne and Pyshnov (1990), mea-
sured the fraction of S(IV) solute retained during
freezing. Here, we have adopted the expression of
Lamb and Blumenstein for this entrapped fraction, the
retention coefficient:

fS(lV) = 0012 + 00058AT, (36)

where AT = T, — T,, is the drop supercooling and T,,
is the drop temperature just prior to impact. Iribarne et
al. (1990) measured the retention of HCl, HNO;, NH;,
and H,0,, and found that these chemicals were totally
retained in the ice after freezing. However, Snider et
al. (1992) suggested that the freezing rates given by
Iribarne et al. (1990) were too high and that some H,0,
is released to the gas phase during riming in natural
clouds. Here, we have adopted the retention coeffi-
cients for HO, (fu,0, = 0.24) given by Snider et al.
(1992).

5. Preliminary tests

The hybrid bin method has been tested on some ide-
alized cases, and the results have been compared with
existing analytical solutions to check the computational
integrity and efficiency of the method. The first test
considered the evolution of a drop spectrum due to
evaporation, using the following simplified growth ker-
nel (11). The analytical solution for the drop number
distribution as a function of time, mass, and the original
number density function at + = 0 has been given by
Tzivion et al. (1989). The function, from Berry
(1967),

F(X,t=0) =4Xexp(—2X), (37)

is used as an initial drop spectrum, where X = m/m; is
the mass normalized to the mode of the distribution m;
(=2.8 X 107 g, equivalent to a radius of 400 um).
The accuracy of the simulated results, as shown in Fig.
5, is similar to that of Tzivion et al. (1989), who did
a similar comparison using the method of moments.
The hybrid bin method is fairly accurate for the con-
densation/evaporation equation even with a time step
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FiG. 5. Comparisons of the results from the hybrid bin method
with an analytical solution for the evolution of drop number distri-
bution due to evaporation. The air humidity is fixed at 70%. The
result shown is after 50 min of simulation time. The top axis is the
drop radius, the bottom axis is the bin number, and the vertical axis
is the number of particles in each bin normalized to the total number.

as large as 100 s. The accuracy does not improve much
with smaller time steps.

The hybrid bin method was also tested for the growth
of droplets by coalescence. The time-dependent sto-
chastic coalescence equation can be idealized by se-
lecting a constant collection kernel K, so that analytical
solutions are available. The drop distribution function
used is the same as that in the previous test but with a
mode m, = 4.18 X 107 g (equivalent to 10 ym in
radius) to represent a cloud drop population. Analytical
solution of the time-dependent drop spectrum for a con-
stant kernel and the initial drop spectrum (37) can be
found in Bleck (1970). Figure 6 shows the results for
a constant kernel of K, = 1.8 X 107 cm®s~!. The
results from the hybrid bin method, with a bin-sizing
factor of 2, very closely follow the analytical solutions,
and the accuracy is similar to that of Tzivion et al.
(1987). The resulits are similar for time steps of 1, 3,
and 10 s.

Another test was performed with the nonlinear Go-
lovin’s kernel K(x, y) = b(x + y), where b is a con-
stant. This kernel is somewhat more realistic than the
constant kernel because of the drop mass dependence.
Berry (1967) provided an asymptotic approximation
for the solution for the drop spectrum evolving from
the initial exponential distribution function:

g(lnr) = 3NgmoX* exp(—X). (38)
Figure 7 demonstrates the evolution of the drop spec-
trum after 30 and 50 minutes for b = 1530 cm® g 7' s !
using a bin-sizing factor of V2.A fairly good agreement
with the quasi-analytical solution is also achieved.
When using a bin-sizing factor of 2, however, the evo-
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FiG. 6. Comparison of the stochastic collection computations for
a constant kernel of K, = 1.8 X 10™* ¢m® s™'. The spectra are for
simulation times of 0, 10, 20, 40, and 60 min. The bottom axis is the
bin number. The vertical axis is the fractional mass in each bin. The
analytical solutions are represented by the dashed lines and the hybrid
bin method by the solid lines.

lution of the spectrum is about two bins slower at 50
min than the actual solution. Such error is mainly due
to the nonlinear nature of the interaction between par-
ticles that each have a different distribution function.
Correction can be made by applying a more compli-
cated scheme (Chen 1992, 144—148), which is by na-
ture close to the method of moments of Tzivion et al.
(1987) and is more time consuming. We elect to use
the less complicated hybrid method with higher bin res-
olution for several reasons. First, the form of the actual
collection kernel is much more complicated than the
Golovin kernel. The stochastic collection equation is
virtually impossible to be solved with complicated
schemes such as the method of moments. Furthermore,
our current understanding of the realistic collection ker-
nel is still quite poor. It does not pay to use a compli-
cated numerical scheme when the equation to be solved
has great uncertainties. Although using a higher bin
resolution seems to introduce more interaction between
bins, the straightforward hybrid method actually takes
less time for each interaction and tends to compensate
for the overall increase in the number of calculations.
Moreover, this hybrid scheme is very flexible so that a
varying bin-sizing factor can be easily applied. Since
the coalescence process is important only for drops
with relatively large sizes, the bin-sizing factor can be
arranged in a way that higher resolution is given to the
larger end of the size spectrum and less to the smaller
end. Thus, the total bin number was reduced to a man-
ageable magnitude (45 in this study) without sacrific-
ing much accuracy for the coalescence process.

An extended test of the hybrid bin method was per-
formed by applying realistic collision and coalescence
kernels and the breakup scheme mentioned in section
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3. This test is designed to focus on the details of the
raindrop size distribution. A conventional parameter-
ization for the raindrop size spectrum used in bulk wa-
ter cloud models assumes the empirically obtained
Marshall-Palmer distribution (Marshall and Palmer
1948):

n(d) = Ny exp(—Ad), (39)

where d denotes drop diameter (mm), N, = 8 X 107¢
mm™*, and A is the slope of the loglinear distribution
function, which can be determined from the rate of
rainfall. This exponential function is accurate only to a
first order. Using the detailed spectral (bin) method and
the realistic coalescence and breakup schemes, we are
able to uncover the finer details of the raindrop size
distribution. This test was performed by letting an in-
itially Marshall—Palmer distribution evolve with time.
As shown in Fig. 8, the evolution of the drop spectrum
starts with the breakup of large drops and the creation
of submillimeter-size small drops. While the number
of large drops decreases continuously, the number of
small drops oscillates toward an equilibrium value. The
whole spectrum becomes quite stable after about 30
min and evolves into a trimodal distribution. This result
is in good agreement with the numerical simulations of
Valdez and Young (1985), List et al. (1987), and
Brown (1988, 1989).

Other tests of the hybrid bin method applied in a
multicomponent framework have been done in previ-
ous studies, as summarized here. The hybrid bin
method was used to study the effect of cloud micro-
physics on the composition of rain with a liquid-phase
particle framework that has two components— water
mass and solute mass (Chen and Lamb 1992). The
evolution of the two-dimensional drop spectra due to
various microphysical processes was demonstrated. It
was also shown that drops of the same size do not nec-
essarily have the same amount of solute and vice versa.
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o
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FIG. 7. Same as Fig. 6 but for Golovin’s kernel.
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FiG. 8. Trimodal drop size spectrum evolved from an initial Mar-
shall-Palmer-type distribution (dashed line) with realistic coales-
cence kernel and breakup scheme. The shade of the curves indicates
the time of simulation, with 10-min increment for each level of line
density. The darkest line shows the drop size spectrum at 50 min of
simulation time.

Such multicomponent nature of the compositions of
cloud drops and rain may be important to the chemical
processes in clouds. For the ice-phase microphysics,
Chen and Lamb (1994 ) applied an ice particle frame-
work with water mass and crystal aspect ratio as its two
components. With an adaptive parameterization
scheme, they were able to simulate the evolution of the
two-dimensional (mass and aspect ratio) spectrum of
ice crystals under varying ambient conditions, as well
as the shift of crystal habits under different temperature
regimes.

6. Summary

A multicomponent, multiphase model has been de-
veloped to study the effects of cloud microphysical pro-
cesses on the redistribution of atmospheric trace sub-
stances. This multicomponent particle framework cat-
egorizes the distribution of liquid-phase particles
according to their water and solute masses. An addi-
tional shape factor (aspect ratio) was applied to the
categorization of ice-phase particles. A hybrid bin
method, which is similar to the method-of-moments
scheme, was applied in the multicomponent particle
framework to ensure fast and accurate calculation of
the particle growth.

The physical and chemical processes have been
treated explicitly in this study. The processes for the
growth of liquid-phase particles include deliquescence
of dry particles into haze drops, which then can grow
by condensation into cloud drops. Cloud drops may
coalesce while colliding with each other and form
larger, precipitable drops (raindrops). Raindrops may
continue to collect smaller drops or break up during
collision. A set of basic liquid-phase chemical pro-
cesses was included without relying on the assumption
of Henry’s law equilibrium between the gas and liquid
phases.
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Special efforts have been put on the growth and hab-
its of the ice crystals. A theoretically derived parame-
terization scheme, which is in good agreement with ob-
servational data, was applied to describe the time evo-
lution of the habits of ice crystals grown by vapor
deposition. Ice crystals are also allowed to grow by
accreting cloud droplets (riming ). Shedding may occur
during heavy riming or melting, when liquid water
starts to accumulate on the surface of ice particles. The
shape changes of ice particles during riming, shedding,
melting, and aggregation have also been considered.
This model has been developed with emphasis.on the
physical and chemical mechanisms and their interac-
tions in clouds. As such, the model proves to be a useful
tool for testing the relative importance of processes
studied in the laboratory. Some recent laboratory re-
sults on the ice-phase chemical processes (trace gas
sorption and entrapment in rime ice ) have been param-
eterized and included in the model.

Because of the amount of detail included, this model
is computationally very intensive. Therefore, a rela-
tively uncomplicated scenario has been chosen for the
simulation at this stage. As will be shown in the sequels
of this paper, the model is readily adaptable to a number
of situations, such as a two-dimensional, steady-state
simulation of a wintertime, orographic cloud.
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APPENDIX

Numerical Solutions of the Condensation
Growth Equation

The condensation growth equation can be written as
a first-order, nonlinear differential equation (cf. Clark
1973; Chen 1992, p. 161):

ir_é[sw_zﬂ],

dat r ror

(AD)

where s.. is the supersaturation and B, «, and § are
independent of r. This equation cannot be solved an-
alytically. Numerical techniques, such as the Runge—
Kutta method, are usually required (Arnason and
Brown 1971; Robinson 1984). Here, a new technique
is introduced, one that is accurate and computationally
efficient.

For a small enough time step ¢, the change of drop
radius 6r can be approximated by
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dr
or = | — | 6t.
’ (dt)

Here, (dr/dt) is the average rate of change of r during
6t and can be approximated by applying the mean value
theorem for integrals (Bak and Lichtenberg 1966, p.
143) such that

Ty

(A2)

(A3)

where r, is the initial drop radius and r, = ry, + éris
the radius after 6¢. We thus have

(6r)?

ot ~ T

(A4)

which can be solved iteratively for r; using ry as the
initial guess. However, (A3) is a good approximation
only when the change of r is not too large. Since the
drop growth rate (A1) varies quite significantly during
cloud formation, time step adjustment is normally re-
quired for solving either (A1) or (A3). The control of
model time step is usually a difficult task for the cal-
culation of drop growth, especially during the activa-
tion stage (Arnason and Brown 1971).

A better way to solve (A3) is to calculate 6t for a
certain increment of r instead. This time-stepping
scheme limits the change of r during a certain time
increment &t such that

ri=ry(l + &),

where ¢ is a small number and is positive for conden-
sation and negative for evaporation. The growth of the
drop can then be calculated by incrementing the drop
size according to (A6) with the corresponding integra-
tion time step, 6t, determined from ( A4). The control
of 6r not only ensures the validity of (A3) but also
enables the linearization of the logarithmic term in
(A3):

(A5)

2 3
ml-m+6H~e-5+5 . (A6
123 2 3
The initial value of |£| should normally be 0.05 or less,
and needs to be readjusted upon encountering either of
two situations. First, there will be times when the over-
all integration time X 6t exceeds the model time step
At, that is, when the current time increment stepped
over the remaining integration time step Af.n,. Also,
small haze particles may reach their equilibrium size
well short of the whole integration time step, and 4t
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(and B*) might be less than zero as r, exceeds the
equilibrium size (overgrowth). So, when the condition

(6r)*
Atrem

is met, a smaller |£| should be reapplied for the last
integration. The optimal decay factor for £ is about 0.25
(i.e., &new = 0.25&,4). The integration process should
be repeated until At or |£| is smaller than a certain
criterion (e.g., <107%).

For large and diluted drops, the Kelvin and Raoult
effects can be ignored, and (A1) can be reduced to

B* < (A7)

d(r?) dr
——— = 2r — = 2Bs., A8
a  Ta T (AS)
which has a square-root analytical solution
r = Vr3 + 2Bs,At. (A9)

Hagen (1979) used the criterion r > r* = r* + 2 um
to decide if the drop can be regarded as large and di-
luted. The parameter r* is called the dividing radius
and r* is the Kohler curve critical radius.
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